

Quantum Computing Codesign for High-Energy Physics

Travis S. Humble Quantum Computing Institute Oak Ridge National Laboratory humblets@ornl.gov

Growing the adoption of quantum computing for high-energy physics research will require interdisciplinary coordination

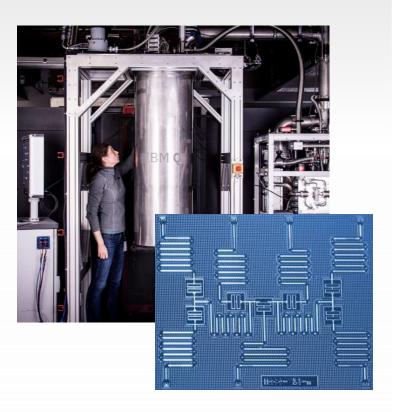
ORNL is managed by UT-Battelle, LLC for the US Department of Energy

This work is supported by the DOE Office of Science.

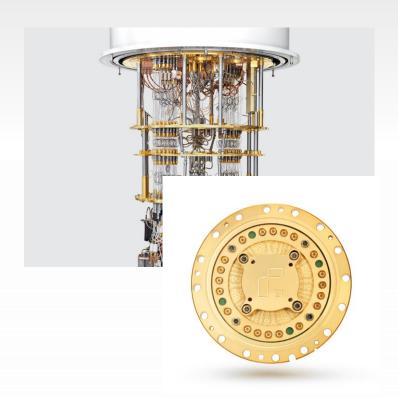
Quantum Computing for High-Energy Physics

- Today, this topic supports a broad scope of loosely related activities and exploratory techniques
 - Modeling and Simulation
 - Detection and Classification
 - Data Analysis and Machine Learning
- In the future, we expect growth and discovery as the technology and methods become more sophisticated
 - Growth in accessibility, controllability, capacity, fidelity, and programmability
 - Advances in theory, modeling, algorithms, analysis, awareness

OLCF Quantum Computing User Program


D-Wave

 DW special-purpose annealing systems provides 2048 qubits


IBM

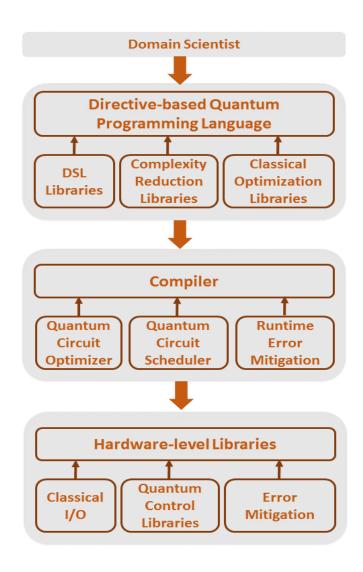
• IBM general-purpose gate system provides 53 qubits

Rigetti

 Rigetti general-purpose gate system provides 31 qubits

Changing Challenges and Emerging Opportunities

- Fast-paced changes in QC over the next 10 years will shift priorities for technology development
 - Examples: analog versus digital simulation, gate versus pulse control, error correction versus coherence, time versus fidelity
 - Where will returns on these investments appear?
 - Chemistry? Optimization? Fault-tolerance?
- Emerging priorities for the HEP community will both compete and complement these alternatives
 - Example: HEP-focused specializations of hardware, software, and algorithms for "quantum advantages"
 - Hope for these advantages require further analysis



Quantum Computing Codesign for High-Energy Physics

- Quantum computing co-design leverages HEP science needs to develop functionality and performance
 - Co-design is a paradigm for interdisciplinary research coordination that uses feedback to make progress
 - Example: tailoring quantum software stacks to specialized hardware for simulating quantum field theories
- These collaborative efforts establish responsibilities and agreement on shared scientific priorities
 - Computational partnerships may be tailored to both shortterm and long-term priorities, opportunities

Quantum Computing Codesign for High-Energy Physics

- Interdisciplinary Priorities
 - Use Cases and Requirements
 - Quantum Algorithms
 - Accelerated Applications
 - Software and Interfaces
 - Communication and Controls
 - Hardware Requirements
 - Systems and Networks
 - Metrics and Benchmarks
 - Verification and Validation
 - Infrastructure

